Properties

Label 1035.e
Number of curves $1$
Conductor $1035$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 1035.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1035.e1 1035c1 \([0, 0, 1, -6582, 205537]\) \(-43258336804864/646875\) \(-471571875\) \([]\) \(640\) \(0.80119\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1035.e1 has rank \(1\).

Complex multiplication

The elliptic curves in class 1035.e do not have complex multiplication.

Modular form 1035.2.a.e

sage: E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{5} + q^{7} - 4 q^{11} + 4 q^{16} - 5 q^{17} + O(q^{20})\) Copy content Toggle raw display