Properties

Label 118579.b
Number of curves $1$
Conductor $118579$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 118579.b1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(19\)\(1 + T\)
\(79\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 118579.b do not have complex multiplication.

Modular form 118579.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + q^{5} - 3 q^{8} - 3 q^{9} + q^{10} + 2 q^{11} + 4 q^{13} - q^{16} - 3 q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 118579.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
118579.b1 118579b1 \([1, -1, 0, 423612946, 8846527401901]\) \(70143520960521/322687697779\) \(-38674635582769950658581013501\) \([]\) \(57335040\) \(4.1678\) \(\Gamma_0(N)\)-optimal