sage:E = EllipticCurve("d1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 1210.d1 has
rank \(0\).
|
Bad L-factors: |
Prime |
L-Factor |
\(2\) | \(1 + T\) |
\(5\) | \(1 - T\) |
\(11\) | \(1\) |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over \(\mathbb{F}_p\) |
\(3\) |
\( 1 + T + 3 T^{2}\) |
1.3.b
|
\(7\) |
\( 1 - 3 T + 7 T^{2}\) |
1.7.ad
|
\(13\) |
\( 1 + 13 T^{2}\) |
1.13.a
|
\(17\) |
\( 1 - 3 T + 17 T^{2}\) |
1.17.ad
|
\(19\) |
\( 1 - 3 T + 19 T^{2}\) |
1.19.ad
|
\(23\) |
\( 1 + 23 T^{2}\) |
1.23.a
|
\(29\) |
\( 1 - 9 T + 29 T^{2}\) |
1.29.aj
|
$\cdots$ | $\cdots$ | $\cdots$ |
|
|
See L-function page for more information |
The elliptic curves in class 1210.d do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 1210.d
sage:E.isogeny_class().curves