\\ Pari/GP code for working with elliptic curve 122018.bi2 \\ Define the curve: E = ellinit([1, -1, 1, -163962, -39044807]) \\ Torsion subgroup: elltors(E) \\ Conductor: ellglobalred(E)[1] \\ Discriminant: E.disc \\ j-invariant: E.j \\ Rank: [lower,upper] = ellrank(E) \\ Regulator: G = E.gen \\ if available matdet(ellheightmatrix(E,G)) \\ Real Period: if(E.disc>0,2,1)*E.omega[1] \\ Tamagawa numbers: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] \\ Torsion order: elltors(E)[1] \\ Special L-value: [r,L1r] = ellanalyticrank(E); L1r/r! \\ q-expansion of modular form: \\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q \\ Modular degree: ellmoddegree(E) \\ Local data: ellglobalred(E)[5] \\ p-adic regulator: G = E.gen \\ if available [ellpadicregulator(E,p,10,G) | p <- primes([5,20])]