Properties

Label 1296.f
Number of curves $4$
Conductor $1296$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1296.f have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1296.f do not have complex multiplication.

Modular form 1296.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{7} - 3 q^{11} + 2 q^{13} + 3 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 21 & 7 \\ 3 & 1 & 7 & 21 \\ 21 & 7 & 1 & 3 \\ 7 & 21 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1296.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1296.f1 1296k3 \([0, 0, 0, -17235, -870894]\) \(-189613868625/128\) \(-382205952\) \([]\) \(1008\) \(0.96251\)  
1296.f2 1296k4 \([0, 0, 0, -13635, -1244862]\) \(-1159088625/2097152\) \(-507227047723008\) \([]\) \(3024\) \(1.5118\)  
1296.f3 1296k2 \([0, 0, 0, -675, 7074]\) \(-140625/8\) \(-1934917632\) \([]\) \(432\) \(0.53887\)  
1296.f4 1296k1 \([0, 0, 0, 45, 18]\) \(3375/2\) \(-5971968\) \([]\) \(144\) \(-0.010440\) \(\Gamma_0(N)\)-optimal