Properties

Label 14.a
Number of curves $6$
Conductor $14$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 14.a have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 14.a do not have complex multiplication.

Modular form 14.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 2 q^{3} + q^{4} + 2 q^{6} + q^{7} - q^{8} + q^{9} - 2 q^{12} - 4 q^{13} - q^{14} + q^{16} + 6 q^{17} - q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 3 & 9 & 18 & 6 \\ 2 & 1 & 6 & 18 & 9 & 3 \\ 3 & 6 & 1 & 3 & 6 & 2 \\ 9 & 18 & 3 & 1 & 2 & 6 \\ 18 & 9 & 6 & 2 & 1 & 3 \\ 6 & 3 & 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 14.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
14.a1 14a5 \([1, 0, 1, -2731, -55146]\) \(2251439055699625/25088\) \(25088\) \([2]\) \(6\) \(0.41310\)  
14.a2 14a3 \([1, 0, 1, -171, -874]\) \(-548347731625/1835008\) \(-1835008\) \([2]\) \(3\) \(0.066527\)  
14.a3 14a2 \([1, 0, 1, -36, -70]\) \(4956477625/941192\) \(941192\) \([6]\) \(2\) \(-0.13621\)  
14.a4 14a6 \([1, 0, 1, -11, 12]\) \(128787625/98\) \(98\) \([6]\) \(6\) \(-0.68551\)  
14.a5 14a4 \([1, 0, 1, -1, 0]\) \(-15625/28\) \(-28\) \([6]\) \(3\) \(-1.0321\)  
14.a6 14a1 \([1, 0, 1, 4, -6]\) \(9938375/21952\) \(-21952\) \([6]\) \(1\) \(-0.48278\) \(\Gamma_0(N)\)-optimal