Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-3041x+64278\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-3041xz^2+64278z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-3940515x+3010787550\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(32, -14)$ | $0.66786550825200487056107800908$ | $\infty$ |
Integral points
\( \left(26, 41\right) \), \( \left(26, -68\right) \), \( \left(32, -14\right) \), \( \left(32, -19\right) \)
Invariants
Conductor: | $N$ | = | \( 14450 \) | = | $2 \cdot 5^{2} \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $-20880250$ | = | $-1 \cdot 2 \cdot 5^{3} \cdot 17^{4} $ |
|
j-invariant: | $j$ | = | \( -\frac{297756989}{2} \) | = | $-1 \cdot 2^{-1} \cdot 17^{2} \cdot 101^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.58638405426660668412400651210$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.76037987186065710294269486050$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9854089913222234$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.724294442234557$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.66786550825200487056107800908$ |
|
Real period: | $\Omega$ | ≈ | $1.9256213367080328894367703075$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.5721121454828307781823085548 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.572112145 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.925621 \cdot 0.667866 \cdot 2}{1^2} \\ & \approx 2.572112145\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 12240 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$5$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
$17$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$17$ | 17B.4.6 | 17.72.1.4 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 680 = 2^{3} \cdot 5 \cdot 17 \), index $576$, genus $17$, and generators
$\left(\begin{array}{rr} 103 & 34 \\ 119 & 579 \end{array}\right),\left(\begin{array}{rr} 69 & 306 \\ 85 & 579 \end{array}\right),\left(\begin{array}{rr} 137 & 0 \\ 0 & 273 \end{array}\right),\left(\begin{array}{rr} 1 & 136 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 545 & 136 \\ 544 & 545 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 41 & 272 \\ 136 & 593 \end{array}\right),\left(\begin{array}{rr} 89 & 34 \\ 17 & 115 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 170 & 1 \end{array}\right),\left(\begin{array}{rr} 256 & 425 \\ 119 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 170 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 511 & 510 \\ 170 & 171 \end{array}\right)$.
The torsion field $K:=\Q(E[680])$ is a degree-$100270080$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/680\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 1445 = 5 \cdot 17^{2} \) |
$5$ | additive | $10$ | \( 578 = 2 \cdot 17^{2} \) |
$17$ | additive | $114$ | \( 50 = 2 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
17.
Its isogeny class 14450.b
consists of 2 curves linked by isogenies of
degree 17.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.11560.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.5345344000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.45665106750000.5 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$16$ | 16.16.698833752810013621337890625.1 | \(\Z/17\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | ord | add | ord | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 2 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.