Properties

Label 168175bf
Number of curves $2$
Conductor $168175$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bf1")
 
E.isogeny_class()
 

Elliptic curves in class 168175bf

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
168175.bf2 168175bf1 \([0, -1, 1, 40042, 4296693]\) \(4096/7\) \(-12133839388671875\) \([]\) \(1224000\) \(1.7712\) \(\Gamma_0(N)\)-optimal
168175.bf1 168175bf2 \([0, -1, 1, -3563708, -2601214557]\) \(-2887553024/16807\) \(-29133348372201171875\) \([]\) \(6120000\) \(2.5759\)  

Rank

sage: E.rank()
 

The elliptic curves in class 168175bf have rank \(1\).

Complex multiplication

The elliptic curves in class 168175bf do not have complex multiplication.

Modular form 168175.2.a.bf

sage: E.q_eigenform(10)
 
\(q + 2 q^{2} - q^{3} + 2 q^{4} - 2 q^{6} - q^{7} - 2 q^{9} + 3 q^{11} - 2 q^{12} - q^{13} - 2 q^{14} - 4 q^{16} - 7 q^{17} - 4 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.