Show commands:
SageMath
E = EllipticCurve("bf1")
E.isogeny_class()
Elliptic curves in class 168175bf
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
168175.bf2 | 168175bf1 | \([0, -1, 1, 40042, 4296693]\) | \(4096/7\) | \(-12133839388671875\) | \([]\) | \(1224000\) | \(1.7712\) | \(\Gamma_0(N)\)-optimal |
168175.bf1 | 168175bf2 | \([0, -1, 1, -3563708, -2601214557]\) | \(-2887553024/16807\) | \(-29133348372201171875\) | \([]\) | \(6120000\) | \(2.5759\) |
Rank
sage: E.rank()
The elliptic curves in class 168175bf have rank \(1\).
Complex multiplication
The elliptic curves in class 168175bf do not have complex multiplication.Modular form 168175.2.a.bf
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.