Properties

Label 17328h
Number of curves $2$
Conductor $17328$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 17328h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17328.r1 17328h1 \([0, -1, 0, -5896, 156928]\) \(470596/57\) \(2745973982208\) \([2]\) \(57600\) \(1.1173\) \(\Gamma_0(N)\)-optimal
17328.r2 17328h2 \([0, -1, 0, 8544, 792288]\) \(715822/3249\) \(-313041033971712\) \([2]\) \(115200\) \(1.4639\)  

Rank

sage: E.rank()
 

The elliptic curves in class 17328h have rank \(0\).

Complex multiplication

The elliptic curves in class 17328h do not have complex multiplication.

Modular form 17328.2.a.h

sage: E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{5} - 4 q^{7} + q^{9} + 4 q^{11} + 4 q^{13} - 4 q^{15} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.