Show commands:
SageMath
E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 1800.l
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1800.l1 | 1800c1 | \([0, 0, 0, -13500, -607500]\) | \(-138240\) | \(-1968300000000\) | \([]\) | \(2880\) | \(1.1911\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 1800.l1 has rank \(0\).
Complex multiplication
The elliptic curves in class 1800.l do not have complex multiplication.Modular form 1800.2.a.l
sage: E.q_eigenform(10)