Properties

Label 1800.l
Number of curves $1$
Conductor $1800$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 1800.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1800.l1 1800c1 \([0, 0, 0, -13500, -607500]\) \(-138240\) \(-1968300000000\) \([]\) \(2880\) \(1.1911\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1800.l1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1800.l do not have complex multiplication.

Modular form 1800.2.a.l

sage: E.q_eigenform(10)
 
\(q - q^{7} + 4 q^{11} + q^{13} - 4 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display