Properties

Label 20.a
Number of curves $4$
Conductor $20$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 20.a have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20.a do not have complex multiplication.

Modular form 20.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} - q^{5} + 2 q^{7} + q^{9} + 2 q^{13} + 2 q^{15} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 20.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20.a1 20a4 \([0, 1, 0, -41, -116]\) \(488095744/125\) \(2000\) \([2]\) \(6\) \(-0.38064\)  
20.a2 20a3 \([0, 1, 0, -36, -140]\) \(-20720464/15625\) \(-4000000\) \([2]\) \(3\) \(-0.034070\)  
20.a3 20a2 \([0, 1, 0, -1, 0]\) \(16384/5\) \(80\) \([6]\) \(2\) \(-0.92995\)  
20.a4 20a1 \([0, 1, 0, 4, 4]\) \(21296/25\) \(-6400\) \([6]\) \(1\) \(-0.58338\) \(\Gamma_0(N)\)-optimal