Properties

Label 2057.c
Number of curves $1$
Conductor $2057$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 2057.c1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(11\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2057.c do not have complex multiplication.

Modular form 2057.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - 2 q^{4} - 3 q^{7} + q^{9} - 4 q^{12} + 6 q^{13} + 4 q^{16} - q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 2057.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2057.c1 2057a1 \([0, -1, 1, 37, 76]\) \(4096000/4913\) \(-6539203\) \([]\) \(360\) \(-0.0060196\) \(\Gamma_0(N)\)-optimal