Properties

Label 208080gk
Number of curves $4$
Conductor $208080$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("gk1")
 
E.isogeny_class()
 

Elliptic curves in class 208080gk

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
208080.ci3 208080gk1 \([0, 0, 0, -2474418, 1228205783]\) \(5951163357184/1129312125\) \(317947218698542194000\) \([2]\) \(7962624\) \(2.6516\) \(\Gamma_0(N)\)-optimal
208080.ci2 208080gk2 \([0, 0, 0, -11955063, -14792188138]\) \(41948679809104/3291890625\) \(14828814040809924000000\) \([2, 2]\) \(15925248\) \(2.9982\)  
208080.ci4 208080gk3 \([0, 0, 0, 11922117, -66505384582]\) \(10400706415004/112060546875\) \(-2019174025164750000000000\) \([2]\) \(31850496\) \(3.3448\)  
208080.ci1 208080gk4 \([0, 0, 0, -187522563, -988384202638]\) \(40472803590982276/281883375\) \(5079143416644821376000\) \([2]\) \(31850496\) \(3.3448\)  

Rank

sage: E.rank()
 

The elliptic curves in class 208080gk have rank \(0\).

Complex multiplication

The elliptic curves in class 208080gk do not have complex multiplication.

Modular form 208080.2.a.gk

sage: E.q_eigenform(10)
 
\(q - q^{5} + 4 q^{11} + 6 q^{13} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.