Properties

Label 21443a
Number of curves $1$
Conductor $21443$
CM no
Rank $3$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 21443a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
21443.a1 21443a1 \([1, 1, 1, -5, 6]\) \(-13997521/21443\) \(-21443\) \([]\) \(2912\) \(-0.47738\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 21443a1 has rank \(3\).

Complex multiplication

The elliptic curves in class 21443a do not have complex multiplication.

Modular form 21443.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} - q^{4} - 4 q^{5} + q^{6} - 2 q^{7} + 3 q^{8} - 2 q^{9} + 4 q^{10} - 6 q^{11} + q^{12} - 4 q^{13} + 2 q^{14} + 4 q^{15} - q^{16} + 4 q^{17} + 2 q^{18} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display