Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-12x+20\) | (homogenize, simplify) |
\(y^2z=x^3-12xz^2+20z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-12x+20\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = | \(\left(-2, 6\right)\) |
$\hat{h}(P)$ | ≈ | $0.031242123845934808975901238705$ |
Integral points
\((-4,\pm 2)\), \((-2,\pm 6)\), \((1,\pm 3)\), \((2,\pm 2)\), \((4,\pm 6)\), \((10,\pm 30)\), \((22,\pm 102)\), \((89,\pm 839)\)
Invariants
Conductor: | \( 216 \) | = | $2^{3} \cdot 3^{3}$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-62208 $ | = | $-1 \cdot 2^{8} \cdot 3^{5} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( -3072 \) | = | $-1 \cdot 2^{10} \cdot 3$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $-0.36759552859938241318146613676\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $-1.2874487692510583242076397331\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $0.9463948908766787\dots$ | |||
Szpiro ratio: | $3.630437087094729\dots$ |
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $0.031242123845934808975901238705\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $3.3065764466916765528964314102\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 12 $ = $ 2^{2}\cdot3 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $1$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 1.2396536502431090008577280786 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 1.239653650 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 3.306576 \cdot 0.031242 \cdot 12}{1^2} \approx 1.239653650$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 24 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{1}^{*}$ | additive | 1 | 3 | 8 | 0 |
$3$ | $3$ | $IV$ | additive | 1 | 3 | 5 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 4.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 12.8.0.c.1, level \( 12 = 2^{2} \cdot 3 \), index $8$, genus $0$, and generators
$\left(\begin{array}{rr} 9 & 4 \\ 8 & 5 \end{array}\right),\left(\begin{array}{rr} 4 & 9 \\ 5 & 1 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 5 & 3 \end{array}\right),\left(\begin{array}{rr} 8 & 3 \\ 1 & 4 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[12])$ is a degree-$576$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/12\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 27 = 3^{3} \) |
$3$ | additive | $8$ | \( 4 = 2^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 216a consists of this curve only.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.108.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.34992.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.181398528.2 | \(\Z/3\Z\) | not in database |
$12$ | 12.2.15045919506432.1 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | ord | ord | ord | ord | ord | ord | ss | ord | ord | ss | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,3 | 1 | 1 | 3,1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.