Properties

Label 221952o
Number of curves $2$
Conductor $221952$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 221952o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
221952.l2 221952o1 \([0, -1, 0, -963, 49815]\) \(-8000/81\) \(-1001033261568\) \([2]\) \(327680\) \(0.98489\) \(\Gamma_0(N)\)-optimal
221952.l1 221952o2 \([0, -1, 0, -26973, 1709253]\) \(2744000/9\) \(7118458748928\) \([2]\) \(655360\) \(1.3315\)  

Rank

sage: E.rank()
 

The elliptic curves in class 221952o have rank \(0\).

Complex multiplication

The elliptic curves in class 221952o do not have complex multiplication.

Modular form 221952.2.a.o

sage: E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{7} + q^{9} + 4 q^{11} - 4 q^{13} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.