Properties

Label 22491.u
Number of curves $3$
Conductor $22491$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 22491.u have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 22491.u do not have complex multiplication.

Modular form 22491.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} + 4 q^{13} + 4 q^{16} - q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 22491.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
22491.u1 22491a3 \([0, 0, 1, -78109920, 265709696348]\) \(22759502184972288000/5831\) \(13502760791877\) \([]\) \(715392\) \(2.8019\)  
22491.u2 22491a2 \([0, 0, 1, -6007890, -5425365542]\) \(838870874148864000/40675641638471\) \(1162864000839247346997\) \([]\) \(715392\) \(2.8019\)  
22491.u3 22491a1 \([0, 0, 1, -965790, 363318205]\) \(31363160518656000/198257271191\) \(629768781855448893\) \([]\) \(238464\) \(2.2526\) \(\Gamma_0(N)\)-optimal