Properties

Label 245.a
Number of curves $1$
Conductor $245$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 245.a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1 - T\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 245.a do not have complex multiplication.

Modular form 245.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} - 3 q^{3} + 2 q^{4} + q^{5} + 6 q^{6} + 6 q^{9} - 2 q^{10} + q^{11} - 6 q^{12} - 3 q^{13} - 3 q^{15} - 4 q^{16} + 3 q^{17} - 12 q^{18} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 245.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
245.a1 245a1 \([0, 0, 1, -7, 12]\) \(-110592/125\) \(-42875\) \([]\) \(48\) \(-0.41676\) \(\Gamma_0(N)\)-optimal