Properties

Label 25071a
Number of curves $1$
Conductor $25071$
CM no
Rank $3$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 25071a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25071.a1 25071a1 \([0, -1, 1, -24, -16]\) \(1593413632/676917\) \(676917\) \([]\) \(8960\) \(-0.18455\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 25071a1 has rank \(3\).

Complex multiplication

The elliptic curves in class 25071a do not have complex multiplication.

Modular form 25071.2.a.a

sage: E.q_eigenform(10)
 
\(q - 2 q^{2} - q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} - 4 q^{7} + q^{9} + 4 q^{10} - 6 q^{11} - 2 q^{12} - 4 q^{13} + 8 q^{14} + 2 q^{15} - 4 q^{16} - 6 q^{17} - 2 q^{18} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display