Show commands: SageMath
Rank
The elliptic curves in class 26.a have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 26.a do not have complex multiplication.Modular form 26.2.a.a
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 26.a
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
26.a1 | 26a2 | \([1, 0, 1, -460, -3830]\) | \(-10730978619193/6656\) | \(-6656\) | \([]\) | \(6\) | \(0.054386\) | |
26.a2 | 26a1 | \([1, 0, 1, -5, -8]\) | \(-10218313/17576\) | \(-17576\) | \([3]\) | \(2\) | \(-0.49492\) | \(\Gamma_0(N)\)-optimal |
26.a3 | 26a3 | \([1, 0, 1, 0, 0]\) | \(12167/26\) | \(-26\) | \([3]\) | \(6\) | \(-1.0442\) |