Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-152x+676\) | (homogenize, simplify) |
\(y^2z=x^3+x^2z-152xz^2+676z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-12339x+529794\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(6, 4)$ | $0.52034720223467033799594498388$ | $\infty$ |
$(8, 6)$ | $1.0054447264417422293112527955$ | $\infty$ |
$(7, 2)$ | $1.4184580008570633673928530661$ | $\infty$ |
Integral points
\((-14,\pm 16)\), \((-10,\pm 36)\), \((-8,\pm 38)\), \((0,\pm 26)\), \((3,\pm 16)\), \((6,\pm 4)\), \((7,\pm 2)\), \((8,\pm 6)\), \((10,\pm 16)\), \((18,\pm 64)\), \((22,\pm 92)\), \((48,\pm 326)\), \((71,\pm 594)\), \((102,\pm 1028)\), \((192,\pm 2662)\), \((1386,\pm 51616)\), \((1480,\pm 56954)\), \((1331158,\pm 1535835044)\)
Invariants
Conductor: | $N$ | = | \( 30064 \) | = | $2^{4} \cdot 1879$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $-1924096$ | = | $-1 \cdot 2^{10} \cdot 1879 $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( -\frac{381775972}{1879} \) | = | $-1 \cdot 2^{2} \cdot 457^{3} \cdot 1879^{-1}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.053911920974803250130359765692$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.52371072949181784105066700219$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $0.7458561948513464$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.5894741867894644$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 3$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 3$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.59336791657747820483664181775$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $2.6433807600687373874353711846$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2^{2}\cdot1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L^{(3)}(E,1)/3!$ | ≈ | $6.2739893372919099854320922065 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 6.273989337 \approx L^{(3)}(E,1)/3! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 2.643381 \cdot 0.593368 \cdot 4}{1^2} \approx 6.273989337$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 10752 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{2}^{*}$ | additive | 1 | 4 | 10 | 0 |
$1879$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3758 = 2 \cdot 1879 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 3757 & 2 \\ 3756 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 3757 & 0 \end{array}\right),\left(\begin{array}{rr} 1885 & 2 \\ 1885 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[3758])$ is a degree-$37376364803040$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3758\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 1879 \) |
$1879$ | nonsplit multiplicative | $1880$ | \( 16 = 2^{4} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 30064c consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 15032d1, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.1879.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.6634074439.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 1879 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | nonsplit |
$\lambda$-invariant(s) | - | 11 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ? |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ? |
An entry ? indicates that the invariants have not yet been computed.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.