Properties

Label 30324h
Number of curves $2$
Conductor $30324$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 30324h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30324.h2 30324h1 \([0, 1, 0, 89047, 10865124]\) \(103737344000/127413867\) \(-95908761994109232\) \([2]\) \(311040\) \(1.9446\) \(\Gamma_0(N)\)-optimal
30324.h1 30324h2 \([0, 1, 0, -530068, 103980020]\) \(1367595682000/402300927\) \(4845209993684911872\) \([2]\) \(622080\) \(2.2912\)  

Rank

sage: E.rank()
 

The elliptic curves in class 30324h have rank \(0\).

Complex multiplication

The elliptic curves in class 30324h do not have complex multiplication.

Modular form 30324.2.a.h

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} - 2 q^{11} - 6 q^{13} - 8 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.