Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 3136b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3136.h2 | 3136b1 | \([0, -1, 0, -457, -559]\) | \(1792\) | \(5903156224\) | \([]\) | \(1344\) | \(0.56519\) | \(\Gamma_0(N)\)-optimal |
3136.h1 | 3136b2 | \([0, -1, 0, -27897, -1784159]\) | \(406749952\) | \(5903156224\) | \([]\) | \(4032\) | \(1.1145\) |
Rank
sage: E.rank()
The elliptic curves in class 3136b have rank \(1\).
Complex multiplication
The elliptic curves in class 3136b do not have complex multiplication.Modular form 3136.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.