Show commands:
SageMath
E = EllipticCurve("t1")
E.isogeny_class()
Elliptic curves in class 3136t
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
3136.m4 | 3136t1 | \([0, 0, 0, 49, 0]\) | \(1728\) | \(-7529536\) | \([2]\) | \(384\) | \(0.0089957\) | \(\Gamma_0(N)\)-optimal | \(-4\) |
3136.m3 | 3136t2 | \([0, 0, 0, -196, 0]\) | \(1728\) | \(481890304\) | \([2, 2]\) | \(768\) | \(0.35557\) | \(-4\) | |
3136.m1 | 3136t3 | \([0, 0, 0, -2156, -38416]\) | \(287496\) | \(3855122432\) | \([2]\) | \(1536\) | \(0.70214\) | \(-16\) | |
3136.m2 | 3136t4 | \([0, 0, 0, -2156, 38416]\) | \(287496\) | \(3855122432\) | \([2]\) | \(1536\) | \(0.70214\) | \(-16\) |
Rank
sage: E.rank()
The elliptic curves in class 3136t have rank \(1\).
Complex multiplication
Each elliptic curve in class 3136t has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).Modular form 3136.2.a.t
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.