Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-11x-14\)
|
(homogenize, simplify) |
\(y^2z=x^3-11xz^2-14z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-11x-14\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-2, 0)$ | $0$ | $2$ |
Integral points
\( \left(-2, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 32 \) | = | $2^{5}$ |
|
Discriminant: | $\Delta$ | = | $512$ | = | $2^{9} $ |
|
j-invariant: | $j$ | = | \( 287496 \) | = | $2^{3} \cdot 3^{3} \cdot 11^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[\sqrt{-4}]\) (potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.61738574535156420883504296185$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.1372461307715231908979670529$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.172456969504371$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.426636471615072$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $2.6220575542921198104648395899$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.65551438857302995261620989747 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.655514389 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 2.622058 \cdot 1.000000 \cdot 1}{2^2} \\ & \approx 0.655514389\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 4 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 2 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There is only one prime $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_0^{*}$ | additive | -1 | 5 | 9 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.192.3.554 |
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 1 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 32.a
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | 2.2.8.1-32.1-a5 |
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/4\Z\) | 2.0.4.1-64.1-CMa2 |
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/4\Z\) | 2.0.8.1-32.1-a3 |
$4$ | \(\Q(\zeta_{8})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.2.2048.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.0.512.1 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.16777216.2 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | \(\Q(\zeta_{16})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.4194304.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.143327232.1 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.8192000.1 | \(\Z/20\Z\) | not in database |
$16$ | 16.4.73786976294838206464.5 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.18014398509481984.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.288230376151711744.2 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | 16.0.20542695432781824.1 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
$16$ | 16.4.1048576000000000000.1 | \(\Z/10\Z\) | not in database |
$16$ | 16.4.5258930030792146944.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | 16.0.17179869184000000.1 | \(\Z/2\Z \oplus \Z/20\Z\) | not in database |
$16$ | 16.0.5258930030792146944.3 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/40\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 |
---|---|
Reduction type | add |
$\lambda$-invariant(s) | - |
$\mu$-invariant(s) | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.