Properties

Label 3213.k
Number of curves $3$
Conductor $3213$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3213.k have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3213.k do not have complex multiplication.

Modular form 3213.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{7} - 4 q^{13} + 4 q^{16} - q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 3213.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3213.k1 3213r3 \([0, 0, 1, -1103490, -427069591]\) \(838870874148864000/40675641638471\) \(7205567889330222237\) \([]\) \(44712\) \(2.3782\)  
3213.k2 3213r2 \([0, 0, 1, -177390, 28599392]\) \(31363160518656000/198257271191\) \(3902297868852453\) \([3]\) \(14904\) \(1.8289\)  
3213.k3 3213r1 \([0, 0, 1, -177120, 28691253]\) \(22759502184972288000/5831\) \(157437\) \([3]\) \(4968\) \(1.2796\) \(\Gamma_0(N)\)-optimal