Properties

Label 36.a1
Conductor $36$
Discriminant $5038848$
j-invariant \( 54000 \)
CM yes (\(D=-12\))
Rank $0$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2=x^3-135x-594\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z=x^3-135xz^2-594z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-135x-594\) Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([0, 0, 0, -135, -594])
 
Copy content gp:E = ellinit([0, 0, 0, -135, -594])
 
Copy content magma:E := EllipticCurve([0, 0, 0, -135, -594]);
 
Copy content oscar:E = elliptic_curve([0, 0, 0, -135, -594])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z/{2}\Z\)

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$(-6, 0)$$0$$2$

Integral points

\( \left(-6, 0\right) \) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: $N$  =  \( 36 \) = $2^{2} \cdot 3^{2}$
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: $\Delta$  =  $5038848$ = $2^{8} \cdot 3^{9} $
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: $j$  =  \( 54000 \) = $2^{4} \cdot 3^{3} \cdot 5^{3}$
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: $\mathrm{End}(E)$ = $\Z$
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$  =  \(\Z[\sqrt{-3}]\)    (potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $N(\mathrm{U}(1))$
Faltings height: $h_{\mathrm{Faltings}}$ ≈ $0.080464438539665444737591499720$
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: $h_{\mathrm{stable}}$ ≈ $-1.2055928983347136967536638423$
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
$abc$ quality: $Q$ ≈ $1.027195810121916$
Szpiro ratio: $\sigma_{m}$ ≈ $7.347366602555891$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$ = $ 0$
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: $r$ = $ 0$
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: $\mathrm{Reg}(E/\Q)$ = $1$
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: $\Omega$ ≈ $1.4021821053254542611750190790$
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $\prod_{p}c_p$ = $ 2 $  = $ 1\cdot2 $
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: $\#E(\Q)_{\mathrm{tor}}$ = $2$
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: $ L(E,1)$ ≈ $0.70109105266272713058750953952 $
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Ш${}_{\mathrm{an}}$  =  $1$    (exact)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

$$\begin{aligned} 0.701091053 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.402182 \cdot 1.000000 \cdot 2}{2^2} \\ & \approx 0.701091053\end{aligned}$$

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([0, 0, 0, -135, -594]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([0, 0, 0, -135, -594]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   36.2.a.a

\( q - 4 q^{7} + 2 q^{13} + 8 q^{19} + O(q^{20}) \) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 6
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: no
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $\mathrm{ord}_p(N)$ $\mathrm{ord}_p(\Delta)$ $\mathrm{ord}_p(\mathrm{den}(j))$
$2$ $1$ $IV^{*}$ additive -1 2 8 0
$3$ $2$ $III^{*}$ additive 1 2 9 0

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3B.1.2 27.648.18.4

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ additive $2$ \( 3 \)
$3$ additive $2$ \( 4 = 2^{2} \)

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 3 and 6.
Its isogeny class 36.a consists of 4 curves linked by isogenies of degrees dividing 6.

Twists

The minimal quadratic twist of this elliptic curve is 36.a2, its twist by $-3$.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{3}) \) \(\Z/2\Z \oplus \Z/2\Z\) 2.2.12.1-36.1-a5
$2$ \(\Q(\sqrt{-3}) \) \(\Z/6\Z\) 2.0.3.1-144.1-CMa2
$3$ 3.1.108.1 \(\Z/6\Z\) not in database
$4$ 4.0.432.1 \(\Z/12\Z\) not in database
$4$ \(\Q(\zeta_{12})\) \(\Z/2\Z \oplus \Z/6\Z\) not in database
$6$ 6.0.34992.1 \(\Z/3\Z \oplus \Z/6\Z\) not in database
$6$ 6.2.559872.1 \(\Z/2\Z \oplus \Z/6\Z\) not in database
$8$ 8.0.2985984.1 \(\Z/2\Z \oplus \Z/12\Z\) not in database
$8$ 8.4.191102976.1 \(\Z/2\Z \oplus \Z/4\Z\) not in database
$12$ 12.0.84687918336.1 \(\Z/42\Z\) not in database
$12$ 12.0.313456656384.1 \(\Z/6\Z \oplus \Z/6\Z\) not in database
$12$ 12.0.940369969152.1 \(\Z/3\Z \oplus \Z/12\Z\) not in database
$16$ 16.0.36520347436056576.1 \(\Z/4\Z \oplus \Z/12\Z\) not in database
$16$ 16.0.36520347436056576.2 \(\Z/2\Z \oplus \Z/24\Z\) not in database
$18$ 18.0.2529990231179046912.1 \(\Z/3\Z \oplus \Z/18\Z\) not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

$p$ 2 3
Reduction type add add
$\lambda$-invariant(s) - -
$\mu$-invariant(s) - -

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

$p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.