Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
3800.a1 |
3800f1 |
3800.a |
3800f |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( - 2^{11} \cdot 5^{8} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$1.126575$ |
$-16241202/171475$ |
$0.93308$ |
$4.46956$ |
$[0, 0, 0, -1675, 115750]$ |
\(y^2=x^3-1675x+115750\) |
152.2.0.? |
$[]$ |
3800.b1 |
3800e2 |
3800.b |
3800e |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( 2^{8} \cdot 5^{7} \cdot 19^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$0.334236190$ |
$1$ |
|
$31$ |
$3072$ |
$0.584636$ |
$3631696/1805$ |
$0.78833$ |
$3.67681$ |
$[0, 1, 0, -508, 1488]$ |
\(y^2=x^3+x^2-508x+1488\) |
2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? |
$[(-2, 50), (22, 38)]$ |
3800.b2 |
3800e1 |
3800.b |
3800e |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( - 2^{4} \cdot 5^{8} \cdot 19 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1.336944762$ |
$1$ |
|
$19$ |
$1536$ |
$0.238062$ |
$702464/475$ |
$0.78481$ |
$3.14113$ |
$[0, 1, 0, 117, 238]$ |
\(y^2=x^3+x^2+117x+238\) |
2.3.0.a.1, 20.6.0.c.1, 38.6.0.b.1, 380.12.0.? |
$[(3, 25), (-1, 11)]$ |
3800.c1 |
3800b2 |
3800.c |
3800b |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( 2^{8} \cdot 5^{9} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.2 |
2B |
$760$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$17920$ |
$1.581814$ |
$3084800518928/361$ |
$0.95550$ |
$5.91885$ |
$[0, 1, 0, -240708, 45375088]$ |
\(y^2=x^3+x^2-240708x+45375088\) |
2.3.0.a.1, 4.6.0.d.1, 10.6.0.a.1, 20.24.0-20.i.1.1, 152.12.0.?, $\ldots$ |
$[]$ |
3800.c2 |
3800b1 |
3800.c |
3800b |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( 2^{4} \cdot 5^{9} \cdot 19^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.2 |
2B |
$760$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$8960$ |
$1.235241$ |
$12144109568/130321$ |
$0.94080$ |
$4.91069$ |
$[0, 1, 0, -15083, 701338]$ |
\(y^2=x^3+x^2-15083x+701338\) |
2.3.0.a.1, 4.6.0.d.1, 10.6.0.a.1, 20.24.0-20.i.1.2, 152.12.0.?, $\ldots$ |
$[]$ |
3800.d1 |
3800g1 |
3800.d |
3800g |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( - 2^{11} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$2.211913794$ |
$1$ |
|
$2$ |
$1152$ |
$0.387541$ |
$-31250/19$ |
$0.89957$ |
$3.43928$ |
$[0, -1, 0, -208, -1588]$ |
\(y^2=x^3-x^2-208x-1588\) |
152.2.0.? |
$[(37, 200)]$ |
3800.e1 |
3800a4 |
3800.e |
3800a |
$4$ |
$4$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( 2^{10} \cdot 5^{7} \cdot 19 \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$760$ |
$48$ |
$0$ |
$5.937430641$ |
$1$ |
|
$5$ |
$6144$ |
$1.190039$ |
$899466517764/95$ |
$0.96248$ |
$5.35175$ |
$[0, 0, 0, -50675, 4390750]$ |
\(y^2=x^3-50675x+4390750\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 40.24.0-40.z.1.4, 152.24.0.?, 380.24.0.?, $\ldots$ |
$[(454, 8658)]$ |
3800.e2 |
3800a3 |
3800.e |
3800a |
$4$ |
$4$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( 2^{10} \cdot 5^{7} \cdot 19^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$760$ |
$48$ |
$0$ |
$1.484357660$ |
$1$ |
|
$5$ |
$6144$ |
$1.190039$ |
$1263284964/651605$ |
$0.94894$ |
$4.55492$ |
$[0, 0, 0, -5675, -54250]$ |
\(y^2=x^3-5675x-54250\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 10.6.0.a.1, 20.24.0-20.g.1.1, 152.24.0.?, $\ldots$ |
$[(-65, 200)]$ |
3800.e3 |
3800a2 |
3800.e |
3800a |
$4$ |
$4$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( 2^{8} \cdot 5^{8} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$380$ |
$48$ |
$0$ |
$2.968715320$ |
$1$ |
|
$7$ |
$3072$ |
$0.843465$ |
$884901456/9025$ |
$0.92560$ |
$4.34355$ |
$[0, 0, 0, -3175, 68250]$ |
\(y^2=x^3-3175x+68250\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 20.24.0-20.b.1.2, 76.24.0.?, 380.48.0.? |
$[(-46, 342)]$ |
3800.e4 |
3800a1 |
3800.e |
3800a |
$4$ |
$4$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( - 2^{4} \cdot 5^{10} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$760$ |
$48$ |
$0$ |
$1.484357660$ |
$1$ |
|
$3$ |
$1536$ |
$0.496891$ |
$-55296/11875$ |
$1.13186$ |
$3.55085$ |
$[0, 0, 0, -50, 2625]$ |
\(y^2=x^3-50x+2625\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 20.12.0-4.c.1.2, 38.6.0.b.1, $\ldots$ |
$[(5, 50)]$ |
3800.f1 |
3800d2 |
3800.f |
3800d |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( 2^{8} \cdot 5^{13} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$107520$ |
$2.427265$ |
$31248575021659890256/28203125$ |
$1.01626$ |
$7.29007$ |
$[0, -1, 0, -10416508, -12936440988]$ |
\(y^2=x^3-x^2-10416508x-12936440988\) |
2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? |
$[]$ |
3800.f2 |
3800d1 |
3800.f |
3800d |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( - 2^{4} \cdot 5^{20} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$16$ |
$2$ |
$1$ |
$53760$ |
$2.080692$ |
$-121981271658244096/115966796875$ |
$1.08046$ |
$6.28109$ |
$[0, -1, 0, -650883, -202065988]$ |
\(y^2=x^3-x^2-650883x-202065988\) |
2.3.0.a.1, 20.6.0.c.1, 38.6.0.b.1, 380.12.0.? |
$[]$ |
3800.g1 |
3800i2 |
3800.g |
3800i |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( 2^{8} \cdot 5^{3} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.2 |
2B |
$760$ |
$48$ |
$1$ |
$0.665191731$ |
$1$ |
|
$5$ |
$3584$ |
$0.777095$ |
$3084800518928/361$ |
$0.95550$ |
$4.74732$ |
$[0, -1, 0, -9628, 366852]$ |
\(y^2=x^3-x^2-9628x+366852\) |
2.3.0.a.1, 4.6.0.d.1, 10.6.0.a.1, 20.24.0-20.i.1.1, 152.12.0.?, $\ldots$ |
$[(48, 114)]$ |
3800.g2 |
3800i1 |
3800.g |
3800i |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( 2^{4} \cdot 5^{3} \cdot 19^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.2 |
2B |
$760$ |
$48$ |
$1$ |
$1.330383463$ |
$1$ |
|
$3$ |
$1792$ |
$0.430521$ |
$12144109568/130321$ |
$0.94080$ |
$3.73916$ |
$[0, -1, 0, -603, 5852]$ |
\(y^2=x^3-x^2-603x+5852\) |
2.3.0.a.1, 4.6.0.d.1, 10.6.0.a.1, 20.24.0-20.i.1.2, 152.12.0.?, $\ldots$ |
$[(17, 15)]$ |
3800.h1 |
3800h1 |
3800.h |
3800h |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( 2^{4} \cdot 5^{9} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$0.951140329$ |
$1$ |
|
$3$ |
$2304$ |
$0.653500$ |
$304900096/45125$ |
$0.86112$ |
$3.87792$ |
$[0, -1, 0, -883, 9012]$ |
\(y^2=x^3-x^2-883x+9012\) |
2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? |
$[(57, 375)]$ |
3800.h2 |
3800h2 |
3800.h |
3800h |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( - 2^{8} \cdot 5^{12} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1.902280658$ |
$1$ |
|
$3$ |
$4608$ |
$1.000072$ |
$91765424/296875$ |
$0.86089$ |
$4.25349$ |
$[0, -1, 0, 1492, 47012]$ |
\(y^2=x^3-x^2+1492x+47012\) |
2.3.0.a.1, 20.6.0.c.1, 38.6.0.b.1, 380.12.0.? |
$[(22, 300)]$ |
3800.i1 |
3800c1 |
3800.i |
3800c |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 19 \) |
\( - 2^{8} \cdot 5^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1120$ |
$0.193240$ |
$-1024/19$ |
$0.79665$ |
$3.10960$ |
$[0, -1, 0, -33, 437]$ |
\(y^2=x^3-x^2-33x+437\) |
38.2.0.a.1 |
$[]$ |