Show commands:
SageMath
E = EllipticCurve("bh1")
E.isogeny_class()
Elliptic curves in class 3822.bh
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3822.bh1 | 3822bc1 | \([1, 0, 0, -1079, 25857]\) | \(-24100657/36504\) | \(-210438295704\) | \([3]\) | \(7056\) | \(0.86432\) | \(\Gamma_0(N)\)-optimal |
3822.bh2 | 3822bc2 | \([1, 0, 0, 9211, -519513]\) | \(14991903983/28960854\) | \(-166953560100054\) | \([]\) | \(21168\) | \(1.4136\) |
Rank
sage: E.rank()
The elliptic curves in class 3822.bh have rank \(0\).
Complex multiplication
The elliptic curves in class 3822.bh do not have complex multiplication.Modular form 3822.2.a.bh
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.