Properties

Label 3822.l
Number of curves $1$
Conductor $3822$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 3822.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3822.l1 3822n1 \([1, 0, 1, 541, -2530]\) \(358321516679/265814016\) \(-13024886784\) \([]\) \(2736\) \(0.62909\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3822.l1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3822.l do not have complex multiplication.

Modular form 3822.2.a.l

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{8} + q^{9} + q^{10} - 3 q^{11} + q^{12} + q^{13} - q^{15} + q^{16} + 2 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display