Show commands:
SageMath
E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 3822.l
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3822.l1 | 3822n1 | \([1, 0, 1, 541, -2530]\) | \(358321516679/265814016\) | \(-13024886784\) | \([]\) | \(2736\) | \(0.62909\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 3822.l1 has rank \(0\).
Complex multiplication
The elliptic curves in class 3822.l do not have complex multiplication.Modular form 3822.2.a.l
sage: E.q_eigenform(10)