Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 3960.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3960.b1 | 3960f3 | \([0, 0, 0, -10803, -431458]\) | \(186779563204/360855\) | \(269376814080\) | \([2]\) | \(8192\) | \(1.0822\) | |
3960.b2 | 3960f4 | \([0, 0, 0, -9003, 327062]\) | \(108108036004/658845\) | \(491825157120\) | \([2]\) | \(8192\) | \(1.0822\) | |
3960.b3 | 3960f2 | \([0, 0, 0, -903, -1798]\) | \(436334416/245025\) | \(45727545600\) | \([2, 2]\) | \(4096\) | \(0.73565\) | |
3960.b4 | 3960f1 | \([0, 0, 0, 222, -223]\) | \(103737344/61875\) | \(-721710000\) | \([2]\) | \(2048\) | \(0.38907\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 3960.b have rank \(1\).
Complex multiplication
The elliptic curves in class 3960.b do not have complex multiplication.Modular form 3960.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.