Properties

Label 3960.b
Number of curves $4$
Conductor $3960$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 3960.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3960.b1 3960f3 \([0, 0, 0, -10803, -431458]\) \(186779563204/360855\) \(269376814080\) \([2]\) \(8192\) \(1.0822\)  
3960.b2 3960f4 \([0, 0, 0, -9003, 327062]\) \(108108036004/658845\) \(491825157120\) \([2]\) \(8192\) \(1.0822\)  
3960.b3 3960f2 \([0, 0, 0, -903, -1798]\) \(436334416/245025\) \(45727545600\) \([2, 2]\) \(4096\) \(0.73565\)  
3960.b4 3960f1 \([0, 0, 0, 222, -223]\) \(103737344/61875\) \(-721710000\) \([2]\) \(2048\) \(0.38907\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3960.b have rank \(1\).

Complex multiplication

The elliptic curves in class 3960.b do not have complex multiplication.

Modular form 3960.2.a.b

sage: E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{7} + q^{11} + 2 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.