Properties

Label 4050.bh
Number of curves $2$
Conductor $4050$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bh1")
 
E.isogeny_class()
 

Elliptic curves in class 4050.bh

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4050.bh1 4050v1 \([1, -1, 1, -155, 847]\) \(-35937/4\) \(-45562500\) \([]\) \(1296\) \(0.20691\) \(\Gamma_0(N)\)-optimal
4050.bh2 4050v2 \([1, -1, 1, 970, -1403]\) \(109503/64\) \(-59049000000\) \([]\) \(3888\) \(0.75622\)  

Rank

sage: E.rank()
 

The elliptic curves in class 4050.bh have rank \(0\).

Complex multiplication

The elliptic curves in class 4050.bh do not have complex multiplication.

Modular form 4050.2.a.bh

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 4 q^{7} + q^{8} + q^{13} + 4 q^{14} + q^{16} + 3 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.