Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 46818c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
46818.e1 | 46818c1 | \([1, -1, 0, -1788, 32228]\) | \(-35937/4\) | \(-70385151204\) | \([]\) | \(60480\) | \(0.81880\) | \(\Gamma_0(N)\)-optimal |
46818.e2 | 46818c2 | \([1, -1, 0, 11217, -48403]\) | \(109503/64\) | \(-91219155960384\) | \([]\) | \(181440\) | \(1.3681\) |
Rank
sage: E.rank()
The elliptic curves in class 46818c have rank \(1\).
Complex multiplication
The elliptic curves in class 46818c do not have complex multiplication.Modular form 46818.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.