Properties

Label 46818c
Number of curves $2$
Conductor $46818$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 46818c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46818.e1 46818c1 \([1, -1, 0, -1788, 32228]\) \(-35937/4\) \(-70385151204\) \([]\) \(60480\) \(0.81880\) \(\Gamma_0(N)\)-optimal
46818.e2 46818c2 \([1, -1, 0, 11217, -48403]\) \(109503/64\) \(-91219155960384\) \([]\) \(181440\) \(1.3681\)  

Rank

sage: E.rank()
 

The elliptic curves in class 46818c have rank \(1\).

Complex multiplication

The elliptic curves in class 46818c do not have complex multiplication.

Modular form 46818.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 3 q^{5} + 4 q^{7} - q^{8} - 3 q^{10} - q^{13} - 4 q^{14} + q^{16} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.