Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 50a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
50.a3 | 50a1 | \([1, 0, 1, -1, -2]\) | \(-25/2\) | \(-1250\) | \([3]\) | \(2\) | \(-0.72610\) | \(\Gamma_0(N)\)-optimal |
50.a1 | 50a2 | \([1, 0, 1, -126, -552]\) | \(-349938025/8\) | \(-5000\) | \([]\) | \(6\) | \(-0.17679\) | |
50.a2 | 50a3 | \([1, 0, 1, -76, 298]\) | \(-121945/32\) | \(-12500000\) | \([3]\) | \(10\) | \(0.078619\) | |
50.a4 | 50a4 | \([1, 0, 1, 549, -2202]\) | \(46969655/32768\) | \(-12800000000\) | \([]\) | \(30\) | \(0.62793\) |
Rank
sage: E.rank()
The elliptic curves in class 50a have rank \(0\).
Complex multiplication
The elliptic curves in class 50a do not have complex multiplication.Modular form 50.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 5 & 15 \\ 3 & 1 & 15 & 5 \\ 5 & 15 & 1 & 3 \\ 15 & 5 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.