Properties

Label 5220.f
Number of curves $2$
Conductor $5220$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 5220.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5220.f1 5220a2 \([0, 0, 0, -1593, -30483]\) \(-1419579648/453125\) \(-142701750000\) \([]\) \(3456\) \(0.85326\)  
5220.f2 5220a1 \([0, 0, 0, 147, 373]\) \(813189888/609725\) \(-263401200\) \([3]\) \(1152\) \(0.30396\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 5220.f have rank \(1\).

Complex multiplication

The elliptic curves in class 5220.f do not have complex multiplication.

Modular form 5220.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{5} - q^{7} - 3 q^{11} - q^{13} + 3 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.