Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2+1127x+4588\) | (homogenize, simplify) |
\(y^2z=x^3-x^2z+1127xz^2+4588z^3\) | (dehomogenize, simplify) |
\(y^2=x^3+91260x+3618459\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(309/4, 5915/8)$ | $3.3955384255618227571951097528$ | $\infty$ |
$(-4, 0)$ | $0$ | $2$ |
Integral points
\( \left(-4, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 56784 \) | = | $2^{4} \cdot 3 \cdot 7 \cdot 13^{2}$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $-102173892912$ | = | $-1 \cdot 2^{4} \cdot 3^{3} \cdot 7^{2} \cdot 13^{6} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( \frac{2048000}{1323} \) | = | $2^{14} \cdot 3^{-3} \cdot 5^{3} \cdot 7^{-2}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.80140390656806677121027398004$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.71211983234935003328888044790$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $1.1084282779180015$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.986629180554218$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 1$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.3955384255618227571951097528$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $0.66283294697136862980734498355$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot1\cdot2\cdot2^{2} $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L'(E,1)$ | ≈ | $4.5013494823393283823553090700 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 4.501349482 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.662833 \cdot 3.395538 \cdot 8}{2^2} \approx 4.501349482$
Modular invariants
Modular form 56784.2.a.u
For more coefficients, see the Downloads section to the right.
Modular degree: | 55296 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II$ | additive | -1 | 4 | 4 | 0 |
$3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$13$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1092 = 2^{2} \cdot 3 \cdot 7 \cdot 13 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 1081 & 12 \\ 1080 & 13 \end{array}\right),\left(\begin{array}{rr} 129 & 494 \\ 910 & 103 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 157 & 936 \\ 858 & 157 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 482 & 767 \\ 1053 & 820 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 1042 & 1083 \end{array}\right),\left(\begin{array}{rr} 167 & 0 \\ 0 & 1091 \end{array}\right)$.
The torsion field $K:=\Q(E[1092])$ is a degree-$2536095744$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1092\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 507 = 3 \cdot 13^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 18928 = 2^{4} \cdot 7 \cdot 13^{2} \) |
$7$ | split multiplicative | $8$ | \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \) |
$13$ | additive | $86$ | \( 336 = 2^{4} \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 56784bw
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 84a1, its twist by $-52$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-13}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.2.1589952.8 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-13})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.36460779264.6 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.4178851762176.26 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.22751526260736.14 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.2527947362304.28 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.0.211169906875005166190792656252915679232.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | ss | split | ord | add | ss | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 1 | 1,3 | 2 | 1 | - | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0,0 | 0 | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.