Show commands:
SageMath
E = EllipticCurve("cl1")
E.isogeny_class()
Elliptic curves in class 6336.cl
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
6336.cl1 | 6336j2 | \([0, 0, 0, -1068, 13360]\) | \(19034163/121\) | \(856424448\) | \([2]\) | \(4096\) | \(0.55103\) | |
6336.cl2 | 6336j1 | \([0, 0, 0, -108, -80]\) | \(19683/11\) | \(77856768\) | \([2]\) | \(2048\) | \(0.20446\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 6336.cl have rank \(0\).
Complex multiplication
The elliptic curves in class 6336.cl do not have complex multiplication.Modular form 6336.2.a.cl
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.