Properties

Label 6480h
Number of curves $2$
Conductor $6480$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 6480h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6480.i2 6480h1 \([0, 0, 0, 117, -198]\) \(59319/40\) \(-119439360\) \([]\) \(1728\) \(0.23856\) \(\Gamma_0(N)\)-optimal
6480.i1 6480h2 \([0, 0, 0, -1323, 21978]\) \(-1058841/250\) \(-60466176000\) \([]\) \(5184\) \(0.78786\)  

Rank

sage: E.rank()
 

The elliptic curves in class 6480h have rank \(0\).

Complex multiplication

The elliptic curves in class 6480h do not have complex multiplication.

Modular form 6480.2.a.h

sage: E.q_eigenform(10)
 
\(q - q^{5} + q^{7} + 5 q^{13} + 6 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.