Show commands:
SageMath
E = EllipticCurve("h1")
E.isogeny_class()
Elliptic curves in class 6480h
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
6480.i2 | 6480h1 | \([0, 0, 0, 117, -198]\) | \(59319/40\) | \(-119439360\) | \([]\) | \(1728\) | \(0.23856\) | \(\Gamma_0(N)\)-optimal |
6480.i1 | 6480h2 | \([0, 0, 0, -1323, 21978]\) | \(-1058841/250\) | \(-60466176000\) | \([]\) | \(5184\) | \(0.78786\) |
Rank
sage: E.rank()
The elliptic curves in class 6480h have rank \(0\).
Complex multiplication
The elliptic curves in class 6480h do not have complex multiplication.Modular form 6480.2.a.h
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.