Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+6486x+818417\) | (homogenize, simplify) |
\(y^2z=x^3+6486xz^2+818417z^3\) | (dehomogenize, simplify) |
\(y^2=x^3+6486x+818417\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{4}\Z\)
Torsion generators
\( \left(76, 1323\right) \)
Integral points
\( \left(-71, 0\right) \), \((76,\pm 1323)\)
Invariants
Conductor: | \( 6552 \) | = | $2^{3} \cdot 3^{2} \cdot 7 \cdot 13$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-306819035136432 $ | = | $-1 \cdot 2^{4} \cdot 3^{9} \cdot 7^{8} \cdot 13^{2} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{2587063175168}{26304786963} \) | = | $2^{11} \cdot 3^{-3} \cdot 7^{-8} \cdot 13^{-2} \cdot 23^{3} \cdot 47^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $1.4608741002227421536715914973\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $0.68051889570203887150155817169\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $1.0143277708927247\dots$ | |||
Szpiro ratio: | $4.637642244874972\dots$ |
BSD invariants
Analytic rank: | $0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.40058656318900767069138331497\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 128 $ = $ 2\cdot2^{2}\cdot2^{3}\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $4$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L(E,1) $ ≈ $ 3.2046925055120613655310665197 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 3.204692506 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.400587 \cdot 1.000000 \cdot 128}{4^2} \approx 3.204692506$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 18432 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III$ | additive | 1 | 3 | 4 | 0 |
$3$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
$7$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.46 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4368 = 2^{4} \cdot 3 \cdot 7 \cdot 13 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 15 & 2 \\ 4270 & 4355 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 4364 & 4365 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1249 & 16 \\ 1256 & 129 \end{array}\right),\left(\begin{array}{rr} 4353 & 16 \\ 4352 & 17 \end{array}\right),\left(\begin{array}{rr} 3837 & 16 \\ 2954 & 3515 \end{array}\right),\left(\begin{array}{rr} 2896 & 4363 \\ 45 & 14 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 1092 & 1093 \end{array}\right),\left(\begin{array}{rr} 13 & 16 \\ 3440 & 4053 \end{array}\right)$.
The torsion field $K:=\Q(E[4368])$ is a degree-$324620255232$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4368\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 9 = 3^{2} \) |
$3$ | additive | $6$ | \( 728 = 2^{3} \cdot 7 \cdot 13 \) |
$7$ | split multiplicative | $8$ | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 6552m
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 2184j1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.2.1728.1 | \(\Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-13})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.85282689024.12 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.2985984.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.153572802259968.40 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 7 | 13 |
---|---|---|---|---|
Reduction type | add | add | split | split |
$\lambda$-invariant(s) | - | - | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.