Properties

Label 69312br
Number of curves $4$
Conductor $69312$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("br1")
 
E.isogeny_class()
 

Elliptic curves in class 69312br

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
69312.dn3 69312br1 \([0, 1, 0, -35137, 2179103]\) \(389017/57\) \(702969339445248\) \([2]\) \(276480\) \(1.5738\) \(\Gamma_0(N)\)-optimal
69312.dn2 69312br2 \([0, 1, 0, -150657, -20393505]\) \(30664297/3249\) \(40069252348379136\) \([2, 2]\) \(552960\) \(1.9204\)  
69312.dn4 69312br3 \([0, 1, 0, 195903, -100171617]\) \(67419143/390963\) \(-4821666699254956032\) \([2]\) \(1105920\) \(2.2669\)  
69312.dn1 69312br4 \([0, 1, 0, -2345537, -1383413985]\) \(115714886617/1539\) \(18980172165021696\) \([2]\) \(1105920\) \(2.2669\)  

Rank

sage: E.rank()
 

The elliptic curves in class 69312br have rank \(1\).

Complex multiplication

The elliptic curves in class 69312br do not have complex multiplication.

Modular form 69312.2.a.br

sage: E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} + q^{9} + 6 q^{13} + 2 q^{15} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.