Properties

Label 89280eg
Number of curves $4$
Conductor $89280$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("eg1")
 
E.isogeny_class()
 

Elliptic curves in class 89280eg

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
89280.r4 89280eg1 \([0, 0, 0, 800052, -309032048]\) \(296354077829711/387386634240\) \(-74030738665887498240\) \([2]\) \(2211840\) \(2.4985\) \(\Gamma_0(N)\)-optimal
89280.r3 89280eg2 \([0, 0, 0, -4913868, -3012858992]\) \(68663623745397169/19216056254400\) \(3672245537199253094400\) \([2]\) \(4423680\) \(2.8450\)  
89280.r2 89280eg3 \([0, 0, 0, -22838988, -42262604912]\) \(-6894246873502147249/47925198774000\) \(-9158648111102951424000\) \([2]\) \(6635520\) \(3.0478\)  
89280.r1 89280eg4 \([0, 0, 0, -366031308, -2695413792368]\) \(28379906689597370652529/1357352437500\) \(259394090287104000000\) \([2]\) \(13271040\) \(3.3943\)  

Rank

sage: E.rank()
 

The elliptic curves in class 89280eg have rank \(1\).

Complex multiplication

The elliptic curves in class 89280eg do not have complex multiplication.

Modular form 89280.2.a.eg

sage: E.q_eigenform(10)
 
\(q - q^{5} - 2 q^{7} + 4 q^{13} - 6 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.