Properties

Label 900.c
Number of curves $2$
Conductor $900$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 900.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
900.c1 900f2 \([0, 0, 0, -273000, 54902500]\) \(-30866268160/3\) \(-218700000000\) \([3]\) \(4320\) \(1.6092\)  
900.c2 900f1 \([0, 0, 0, -3000, 92500]\) \(-40960/27\) \(-1968300000000\) \([]\) \(1440\) \(1.0599\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 900.c have rank \(0\).

Complex multiplication

The elliptic curves in class 900.c do not have complex multiplication.

Modular form 900.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{7} - 6 q^{11} + 5 q^{13} + 6 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.