Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 900.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
900.c1 | 900f2 | \([0, 0, 0, -273000, 54902500]\) | \(-30866268160/3\) | \(-218700000000\) | \([3]\) | \(4320\) | \(1.6092\) | |
900.c2 | 900f1 | \([0, 0, 0, -3000, 92500]\) | \(-40960/27\) | \(-1968300000000\) | \([]\) | \(1440\) | \(1.0599\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 900.c have rank \(0\).
Complex multiplication
The elliptic curves in class 900.c do not have complex multiplication.Modular form 900.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.