Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 912.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
912.b1 | 912g3 | \([0, -1, 0, -1624, -24656]\) | \(115714886617/1539\) | \(6303744\) | \([2]\) | \(384\) | \(0.44814\) | |
912.b2 | 912g2 | \([0, -1, 0, -104, -336]\) | \(30664297/3249\) | \(13307904\) | \([2, 2]\) | \(192\) | \(0.10156\) | |
912.b3 | 912g1 | \([0, -1, 0, -24, 48]\) | \(389017/57\) | \(233472\) | \([2]\) | \(96\) | \(-0.24501\) | \(\Gamma_0(N)\)-optimal |
912.b4 | 912g4 | \([0, -1, 0, 136, -1872]\) | \(67419143/390963\) | \(-1601384448\) | \([4]\) | \(384\) | \(0.44814\) |
Rank
sage: E.rank()
The elliptic curves in class 912.b have rank \(1\).
Complex multiplication
The elliptic curves in class 912.b do not have complex multiplication.Modular form 912.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.