Minimal equation
Minimal equation
Simplified equation
| $y^2 + (x^3 + x)y = x^3 - 2x^2 - x + 1$ | (homogenize, simplify) |
| $y^2 + (x^3 + xz^2)y = x^3z^3 - 2x^2z^4 - xz^5 + z^6$ | (dehomogenize, simplify) |
| $y^2 = x^6 + 2x^4 + 4x^3 - 7x^2 - 4x + 4$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(1192\) | \(=\) | \( 2^{3} \cdot 149 \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(-19072\) | \(=\) | \( - 2^{7} \cdot 149 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(160\) | \(=\) | \( 2^{5} \cdot 5 \) |
| \( I_4 \) | \(=\) | \(3184\) | \(=\) | \( 2^{4} \cdot 199 \) |
| \( I_6 \) | \(=\) | \(271780\) | \(=\) | \( 2^{2} \cdot 5 \cdot 107 \cdot 127 \) |
| \( I_{10} \) | \(=\) | \(76288\) | \(=\) | \( 2^{9} \cdot 149 \) |
| \( J_2 \) | \(=\) | \(80\) | \(=\) | \( 2^{4} \cdot 5 \) |
| \( J_4 \) | \(=\) | \(-264\) | \(=\) | \( - 2^{3} \cdot 3 \cdot 11 \) |
| \( J_6 \) | \(=\) | \(-17220\) | \(=\) | \( - 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 41 \) |
| \( J_8 \) | \(=\) | \(-361824\) | \(=\) | \( - 2^{5} \cdot 3 \cdot 3769 \) |
| \( J_{10} \) | \(=\) | \(19072\) | \(=\) | \( 2^{7} \cdot 149 \) |
| \( g_1 \) | \(=\) | \(25600000/149\) | ||
| \( g_2 \) | \(=\) | \(-1056000/149\) | ||
| \( g_3 \) | \(=\) | \(-861000/149\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (0 : -1 : 1),\, (0 : 1 : 1),\, (-1 : 1 : 1),\, (1 : -1 : 1)\)
Number of rational Weierstrass points: \(2\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{22}\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : 1 : 1) - (1 : 0 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3 + z^3\) | \(0\) | \(22\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : 1 : 1) - (1 : 0 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3 + z^3\) | \(0\) | \(22\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : 2 : 1) - (1 : 1 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3 + xz^2 + 2z^3\) | \(0\) | \(22\) |
BSD invariants
| Hasse-Weil conjecture: | unverified |
| Analytic rank: | \(0\) |
| Mordell-Weil rank: | \(0\) |
| 2-Selmer rank: | \(1\) |
| Regulator: | \( 1 \) |
| Real period: | \( 22.62706 \) |
| Tamagawa product: | \( 11 \) |
| Torsion order: | \( 22 \) |
| Leading coefficient: | \( 0.514251 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(3\) | \(7\) | \(11\) | \(1^*\) | \(1 - T\) | yes | |
| \(149\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 - 18 T + 149 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.30.3 | yes |
| \(11\) | not computed | yes |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).