This is a model for the modular curve $X_0(28)$.
Minimal equation
Minimal equation
Simplified equation
| $y^2 + (x^2 + x)y = x^6 + 3x^5 + 6x^4 + 7x^3 + 6x^2 + 3x + 1$ | (homogenize, simplify) |
| $y^2 + (x^2z + xz^2)y = x^6 + 3x^5z + 6x^4z^2 + 7x^3z^3 + 6x^2z^4 + 3xz^5 + z^6$ | (dehomogenize, simplify) |
| $y^2 = 4x^6 + 12x^5 + 25x^4 + 30x^3 + 25x^2 + 12x + 4$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(196\) | \(=\) | \( 2^{2} \cdot 7^{2} \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(-21952\) | \(=\) | \( - 2^{6} \cdot 7^{3} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(1340\) | \(=\) | \( 2^{2} \cdot 5 \cdot 67 \) |
| \( I_4 \) | \(=\) | \(1345\) | \(=\) | \( 5 \cdot 269 \) |
| \( I_6 \) | \(=\) | \(149855\) | \(=\) | \( 5 \cdot 17 \cdot 41 \cdot 43 \) |
| \( I_{10} \) | \(=\) | \(2809856\) | \(=\) | \( 2^{13} \cdot 7^{3} \) |
| \( J_2 \) | \(=\) | \(335\) | \(=\) | \( 5 \cdot 67 \) |
| \( J_4 \) | \(=\) | \(4620\) | \(=\) | \( 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
| \( J_6 \) | \(=\) | \(90160\) | \(=\) | \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 23 \) |
| \( J_8 \) | \(=\) | \(2214800\) | \(=\) | \( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 113 \) |
| \( J_{10} \) | \(=\) | \(21952\) | \(=\) | \( 2^{6} \cdot 7^{3} \) |
| \( g_1 \) | \(=\) | \(4219140959375/21952\) | ||
| \( g_2 \) | \(=\) | \(6203236875/784\) | ||
| \( g_3 \) | \(=\) | \(12905875/28\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $D_6$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $D_6$ |
|
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{6}\Z \oplus \Z/{6}\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((-1 : 1 : 1) - (1 : 1 : 0)\) | \(z (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3\) | \(0\) | \(6\) |
| \(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(3x^2 + 5xz + 4z^2\) | \(=\) | \(0,\) | \(9y\) | \(=\) | \(8xz^2 + 13z^3\) | \(0\) | \(6\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((-1 : 1 : 1) - (1 : 1 : 0)\) | \(z (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3\) | \(0\) | \(6\) |
| \(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(3x^2 + 5xz + 4z^2\) | \(=\) | \(0,\) | \(9y\) | \(=\) | \(8xz^2 + 13z^3\) | \(0\) | \(6\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((-1 : 2 : 1) - (1 : 2 : 0)\) | \(z (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-2x^3 + x^2z + xz^2\) | \(0\) | \(6\) |
| \(D_0 - (1 : -2 : 0) - (1 : 2 : 0)\) | \(3x^2 + 5xz + 4z^2\) | \(=\) | \(0,\) | \(9y\) | \(=\) | \(x^2z + 17xz^2 + 26z^3\) | \(0\) | \(6\) |
2-torsion field: \(\Q(\sqrt{-7}) \)
BSD invariants
| Hasse-Weil conjecture: | verified |
| Analytic rank: | \(0\) |
| Mordell-Weil rank: | \(0\) |
| 2-Selmer rank: | \(2\) |
| Regulator: | \( 1 \) |
| Real period: | \( 11.77714 \) |
| Tamagawa product: | \( 12 \) |
| Torsion order: | \( 36 \) |
| Leading coefficient: | \( 0.109047 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(2\) | \(6\) | \(4\) | \(1^*\) | \(( 1 + T )^{2}\) | yes | |
| \(7\) | \(2\) | \(3\) | \(3\) | \(1\) | \(( 1 - T )^{2}\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.360.3 | yes |
| \(3\) | 3.17280.1 | yes |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $E_1$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
Elliptic curve isogeny class 14.a
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | an Eichler order of index \(3\) in a maximal order of \(\End (J_{}) \otimes \Q\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).