L(s) = 1 | + (0.401 − 0.915i)3-s + (−0.245 − 0.969i)5-s + (0.789 − 0.614i)7-s + (−0.677 − 0.735i)9-s + (0.677 − 0.735i)11-s + (0.401 − 0.915i)13-s + (−0.986 − 0.164i)15-s + (0.789 − 0.614i)17-s + (−0.245 − 0.969i)21-s + (−0.401 − 0.915i)23-s + (−0.879 + 0.475i)25-s + (−0.945 + 0.324i)27-s + (−0.789 + 0.614i)29-s + (0.945 − 0.324i)31-s + (−0.401 − 0.915i)33-s + ⋯ |
L(s) = 1 | + (0.401 − 0.915i)3-s + (−0.245 − 0.969i)5-s + (0.789 − 0.614i)7-s + (−0.677 − 0.735i)9-s + (0.677 − 0.735i)11-s + (0.401 − 0.915i)13-s + (−0.986 − 0.164i)15-s + (0.789 − 0.614i)17-s + (−0.245 − 0.969i)21-s + (−0.401 − 0.915i)23-s + (−0.879 + 0.475i)25-s + (−0.945 + 0.324i)27-s + (−0.789 + 0.614i)29-s + (0.945 − 0.324i)31-s + (−0.401 − 0.915i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0608i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0608i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.06575727018 - 2.158234989i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.06575727018 - 2.158234989i\) |
\(L(1)\) |
\(\approx\) |
\(0.9587954028 - 0.9350105353i\) |
\(L(1)\) |
\(\approx\) |
\(0.9587954028 - 0.9350105353i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.401 - 0.915i)T \) |
| 5 | \( 1 + (-0.245 - 0.969i)T \) |
| 7 | \( 1 + (0.789 - 0.614i)T \) |
| 11 | \( 1 + (0.677 - 0.735i)T \) |
| 13 | \( 1 + (0.401 - 0.915i)T \) |
| 17 | \( 1 + (0.789 - 0.614i)T \) |
| 23 | \( 1 + (-0.401 - 0.915i)T \) |
| 29 | \( 1 + (-0.789 + 0.614i)T \) |
| 31 | \( 1 + (0.945 - 0.324i)T \) |
| 37 | \( 1 + (0.677 - 0.735i)T \) |
| 41 | \( 1 + (-0.986 - 0.164i)T \) |
| 43 | \( 1 + (0.0825 + 0.996i)T \) |
| 47 | \( 1 + (-0.677 + 0.735i)T \) |
| 53 | \( 1 + (0.677 - 0.735i)T \) |
| 59 | \( 1 + (0.986 + 0.164i)T \) |
| 61 | \( 1 + (-0.546 + 0.837i)T \) |
| 67 | \( 1 + (-0.546 - 0.837i)T \) |
| 71 | \( 1 + (0.546 + 0.837i)T \) |
| 73 | \( 1 + (0.789 - 0.614i)T \) |
| 79 | \( 1 + (-0.0825 - 0.996i)T \) |
| 83 | \( 1 + (-0.245 + 0.969i)T \) |
| 89 | \( 1 + (0.789 + 0.614i)T \) |
| 97 | \( 1 + (0.546 - 0.837i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.4493379109902301799917536051, −18.85546160005702985657572744926, −18.19235524469789382277148382092, −17.25103095132252470362617109390, −16.77971797208130766613939981946, −15.640981357690858962196761823722, −15.26165164637975451921125214771, −14.647789826160535124533504371599, −14.14173841750748855818491552576, −13.42868187898059030022062827440, −11.951222480952156349239523295221, −11.7115829868798941118073344131, −10.96973540797118658400125557083, −10.06894378964260648782026159562, −9.62652400305257956388818390992, −8.69019134950653110231256606329, −8.0640885391307270113139393209, −7.27710414459988726710072635706, −6.32507132282808731944304558782, −5.56056413279758969275343422862, −4.608493009682806852767406922195, −3.91834314536174622839062339637, −3.29400721753551249338819087115, −2.2176494360902219198544737624, −1.64270571363917132424607982959,
0.7231261141158092472083429288, 1.05414488349541322177818067632, 2.047302927711991736708534355063, 3.19694627513692265566266578062, 3.87560995358727725387405303886, 4.847426405130155405227850911600, 5.6649305042096330513997497040, 6.41409376105465221161862446459, 7.4582130484878459032489253122, 7.99479625540905626551244044271, 8.50565015923933066595901706544, 9.2220135680237208791281414492, 10.19594095281553166766119917230, 11.253597694589110568547554360981, 11.72796242507438540531372513409, 12.50907605761939823140420535233, 13.177067150550405659792143679881, 13.7890240415268367549426596745, 14.45615421791340804689004413880, 15.08688026384973900132881555919, 16.2784464832721941830938190562, 16.67206809363749358601230462335, 17.485766408517380280180981971777, 18.101676090970815422436637911478, 18.78568861766137270840140464963