Properties

Label 1-35-35.2-r1-0-0
Degree 11
Conductor 3535
Sign 0.9080.417i0.908 - 0.417i
Analytic cond. 3.761273.76127
Root an. cond. 3.761273.76127
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 − 0.5i)2-s + (0.866 + 0.5i)3-s + (0.5 − 0.866i)4-s + 6-s i·8-s + (0.5 + 0.866i)9-s + (−0.5 + 0.866i)11-s + (0.866 − 0.5i)12-s i·13-s + (−0.5 − 0.866i)16-s + (−0.866 − 0.5i)17-s + (0.866 + 0.5i)18-s + (0.5 + 0.866i)19-s + i·22-s + (−0.866 + 0.5i)23-s + (0.5 − 0.866i)24-s + ⋯
L(s)  = 1  + (0.866 − 0.5i)2-s + (0.866 + 0.5i)3-s + (0.5 − 0.866i)4-s + 6-s i·8-s + (0.5 + 0.866i)9-s + (−0.5 + 0.866i)11-s + (0.866 − 0.5i)12-s i·13-s + (−0.5 − 0.866i)16-s + (−0.866 − 0.5i)17-s + (0.866 + 0.5i)18-s + (0.5 + 0.866i)19-s + i·22-s + (−0.866 + 0.5i)23-s + (0.5 − 0.866i)24-s + ⋯

Functional equation

Λ(s)=(35s/2ΓR(s+1)L(s)=((0.9080.417i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.908 - 0.417i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(35s/2ΓR(s+1)L(s)=((0.9080.417i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.908 - 0.417i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 3535    =    575 \cdot 7
Sign: 0.9080.417i0.908 - 0.417i
Analytic conductor: 3.761273.76127
Root analytic conductor: 3.761273.76127
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ35(2,)\chi_{35} (2, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 35, (1: ), 0.9080.417i)(1,\ 35,\ (1:\ ),\ 0.908 - 0.417i)

Particular Values

L(12)L(\frac{1}{2}) \approx 2.7181111010.5939212068i2.718111101 - 0.5939212068i
L(12)L(\frac12) \approx 2.7181111010.5939212068i2.718111101 - 0.5939212068i
L(1)L(1) \approx 2.0226871730.3439784556i2.022687173 - 0.3439784556i
L(1)L(1) \approx 2.0226871730.3439784556i2.022687173 - 0.3439784556i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
7 1 1
good2 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
3 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
11 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
13 1iT 1 - iT
17 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
19 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
23 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
29 1T 1 - T
31 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
37 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
41 1+T 1 + T
43 1iT 1 - iT
47 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
53 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
59 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
61 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
67 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
71 1+T 1 + T
73 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
79 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
83 1iT 1 - iT
89 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
97 1+iT 1 + iT
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−35.59910556888870191104038261084, −34.5491197196213397853178449292, −33.139790922880960360837633984477, −31.98429806201945131277114662520, −31.14316437994159622782128062278, −30.12097472286172158098414098320, −28.91438142656687972759492667454, −26.53942157582756157533475900835, −25.94738826735708365552515402428, −24.31453507290520542980915996304, −23.96053750711599078301222154631, −22.10785158455013824657689698595, −20.9722004665645462449841208562, −19.6913951972389108501187299340, −18.16097632199931193431851527847, −16.40798799212429862133596127345, −15.09673006095517454118607126277, −13.870216007044681308131658372130, −12.99469199329751140900192168461, −11.40305618408171642726960277184, −8.9326723563768611725471447826, −7.59617739475376023513821328415, −6.195058614860654066255917608380, −4.10981455216769926587429169531, −2.45955293864876159220403598747, 2.25482763699762490408729632759, 3.800184639831668899720305117076, 5.30810329549512608468832877963, 7.53940282731089718088345180747, 9.56053378114159156516744300472, 10.71454759968517399891237260839, 12.54940421952370673502148455321, 13.75107163835168794846892456630, 15.003608723005802107184334105923, 15.93436159450332709011586603405, 18.302937061750072741358329909129, 19.954979484248753356949264425323, 20.51981840154720851774899142914, 21.867376268165700036905272143251, 22.96795193488978953650872254987, 24.567079380133396770061055546504, 25.59616376233569921601209715488, 27.188152775860030134872747315948, 28.40474534221674878824998352695, 29.879416518472621948159014955233, 31.00485230188198038257288282362, 31.80334912458809387038562252908, 32.96917005755833550252605032144, 33.84273960730530060122891935750, 35.89377509879203932391478691188

Graph of the ZZ-function along the critical line