L(s) = 1 | + (0.866 − 0.5i)2-s + (0.866 + 0.5i)3-s + (0.5 − 0.866i)4-s + 6-s − i·8-s + (0.5 + 0.866i)9-s + (−0.5 + 0.866i)11-s + (0.866 − 0.5i)12-s − i·13-s + (−0.5 − 0.866i)16-s + (−0.866 − 0.5i)17-s + (0.866 + 0.5i)18-s + (0.5 + 0.866i)19-s + i·22-s + (−0.866 + 0.5i)23-s + (0.5 − 0.866i)24-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.866 + 0.5i)3-s + (0.5 − 0.866i)4-s + 6-s − i·8-s + (0.5 + 0.866i)9-s + (−0.5 + 0.866i)11-s + (0.866 − 0.5i)12-s − i·13-s + (−0.5 − 0.866i)16-s + (−0.866 − 0.5i)17-s + (0.866 + 0.5i)18-s + (0.5 + 0.866i)19-s + i·22-s + (−0.866 + 0.5i)23-s + (0.5 − 0.866i)24-s + ⋯ |
Λ(s)=(=(35s/2ΓR(s+1)L(s)(0.908−0.417i)Λ(1−s)
Λ(s)=(=(35s/2ΓR(s+1)L(s)(0.908−0.417i)Λ(1−s)
Degree: |
1 |
Conductor: |
35
= 5⋅7
|
Sign: |
0.908−0.417i
|
Analytic conductor: |
3.76127 |
Root analytic conductor: |
3.76127 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ35(2,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 35, (1: ), 0.908−0.417i)
|
Particular Values
L(21) |
≈ |
2.718111101−0.5939212068i |
L(21) |
≈ |
2.718111101−0.5939212068i |
L(1) |
≈ |
2.022687173−0.3439784556i |
L(1) |
≈ |
2.022687173−0.3439784556i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1 |
good | 2 | 1+(0.866−0.5i)T |
| 3 | 1+(0.866+0.5i)T |
| 11 | 1+(−0.5+0.866i)T |
| 13 | 1−iT |
| 17 | 1+(−0.866−0.5i)T |
| 19 | 1+(0.5+0.866i)T |
| 23 | 1+(−0.866+0.5i)T |
| 29 | 1−T |
| 31 | 1+(−0.5+0.866i)T |
| 37 | 1+(0.866−0.5i)T |
| 41 | 1+T |
| 43 | 1−iT |
| 47 | 1+(0.866−0.5i)T |
| 53 | 1+(0.866+0.5i)T |
| 59 | 1+(0.5−0.866i)T |
| 61 | 1+(−0.5−0.866i)T |
| 67 | 1+(−0.866−0.5i)T |
| 71 | 1+T |
| 73 | 1+(0.866+0.5i)T |
| 79 | 1+(0.5+0.866i)T |
| 83 | 1−iT |
| 89 | 1+(0.5+0.866i)T |
| 97 | 1+iT |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−35.59910556888870191104038261084, −34.5491197196213397853178449292, −33.139790922880960360837633984477, −31.98429806201945131277114662520, −31.14316437994159622782128062278, −30.12097472286172158098414098320, −28.91438142656687972759492667454, −26.53942157582756157533475900835, −25.94738826735708365552515402428, −24.31453507290520542980915996304, −23.96053750711599078301222154631, −22.10785158455013824657689698595, −20.9722004665645462449841208562, −19.6913951972389108501187299340, −18.16097632199931193431851527847, −16.40798799212429862133596127345, −15.09673006095517454118607126277, −13.870216007044681308131658372130, −12.99469199329751140900192168461, −11.40305618408171642726960277184, −8.9326723563768611725471447826, −7.59617739475376023513821328415, −6.195058614860654066255917608380, −4.10981455216769926587429169531, −2.45955293864876159220403598747,
2.25482763699762490408729632759, 3.800184639831668899720305117076, 5.30810329549512608468832877963, 7.53940282731089718088345180747, 9.56053378114159156516744300472, 10.71454759968517399891237260839, 12.54940421952370673502148455321, 13.75107163835168794846892456630, 15.003608723005802107184334105923, 15.93436159450332709011586603405, 18.302937061750072741358329909129, 19.954979484248753356949264425323, 20.51981840154720851774899142914, 21.867376268165700036905272143251, 22.96795193488978953650872254987, 24.567079380133396770061055546504, 25.59616376233569921601209715488, 27.188152775860030134872747315948, 28.40474534221674878824998352695, 29.879416518472621948159014955233, 31.00485230188198038257288282362, 31.80334912458809387038562252908, 32.96917005755833550252605032144, 33.84273960730530060122891935750, 35.89377509879203932391478691188