L(s) = 1 | + (0.866 − 0.5i)2-s + (0.866 + 0.5i)3-s + (0.5 − 0.866i)4-s + 6-s − i·8-s + (0.5 + 0.866i)9-s + (−0.5 + 0.866i)11-s + (0.866 − 0.5i)12-s − i·13-s + (−0.5 − 0.866i)16-s + (−0.866 − 0.5i)17-s + (0.866 + 0.5i)18-s + (0.5 + 0.866i)19-s + i·22-s + (−0.866 + 0.5i)23-s + (0.5 − 0.866i)24-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.866 + 0.5i)3-s + (0.5 − 0.866i)4-s + 6-s − i·8-s + (0.5 + 0.866i)9-s + (−0.5 + 0.866i)11-s + (0.866 − 0.5i)12-s − i·13-s + (−0.5 − 0.866i)16-s + (−0.866 − 0.5i)17-s + (0.866 + 0.5i)18-s + (0.5 + 0.866i)19-s + i·22-s + (−0.866 + 0.5i)23-s + (0.5 − 0.866i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.908 - 0.417i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.908 - 0.417i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.718111101 - 0.5939212068i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.718111101 - 0.5939212068i\) |
\(L(1)\) |
\(\approx\) |
\(2.022687173 - 0.3439784556i\) |
\(L(1)\) |
\(\approx\) |
\(2.022687173 - 0.3439784556i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 - iT \) |
| 17 | \( 1 + (-0.866 - 0.5i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.866 - 0.5i)T \) |
| 53 | \( 1 + (0.866 + 0.5i)T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.5 - 0.866i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + (0.866 + 0.5i)T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−35.59910556888870191104038261084, −34.5491197196213397853178449292, −33.139790922880960360837633984477, −31.98429806201945131277114662520, −31.14316437994159622782128062278, −30.12097472286172158098414098320, −28.91438142656687972759492667454, −26.53942157582756157533475900835, −25.94738826735708365552515402428, −24.31453507290520542980915996304, −23.96053750711599078301222154631, −22.10785158455013824657689698595, −20.9722004665645462449841208562, −19.6913951972389108501187299340, −18.16097632199931193431851527847, −16.40798799212429862133596127345, −15.09673006095517454118607126277, −13.870216007044681308131658372130, −12.99469199329751140900192168461, −11.40305618408171642726960277184, −8.9326723563768611725471447826, −7.59617739475376023513821328415, −6.195058614860654066255917608380, −4.10981455216769926587429169531, −2.45955293864876159220403598747,
2.25482763699762490408729632759, 3.800184639831668899720305117076, 5.30810329549512608468832877963, 7.53940282731089718088345180747, 9.56053378114159156516744300472, 10.71454759968517399891237260839, 12.54940421952370673502148455321, 13.75107163835168794846892456630, 15.003608723005802107184334105923, 15.93436159450332709011586603405, 18.302937061750072741358329909129, 19.954979484248753356949264425323, 20.51981840154720851774899142914, 21.867376268165700036905272143251, 22.96795193488978953650872254987, 24.567079380133396770061055546504, 25.59616376233569921601209715488, 27.188152775860030134872747315948, 28.40474534221674878824998352695, 29.879416518472621948159014955233, 31.00485230188198038257288282362, 31.80334912458809387038562252908, 32.96917005755833550252605032144, 33.84273960730530060122891935750, 35.89377509879203932391478691188