L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.965 − 0.258i)3-s + (0.5 − 0.866i)4-s + (0.258 − 0.965i)5-s + (−0.707 + 0.707i)6-s + i·8-s + (0.866 − 0.5i)9-s + (0.258 + 0.965i)10-s + (0.258 + 0.965i)11-s + (0.258 − 0.965i)12-s + 13-s − i·15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)18-s + (0.866 − 0.5i)19-s + (−0.707 − 0.707i)20-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.965 − 0.258i)3-s + (0.5 − 0.866i)4-s + (0.258 − 0.965i)5-s + (−0.707 + 0.707i)6-s + i·8-s + (0.866 − 0.5i)9-s + (0.258 + 0.965i)10-s + (0.258 + 0.965i)11-s + (0.258 − 0.965i)12-s + 13-s − i·15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)18-s + (0.866 − 0.5i)19-s + (−0.707 − 0.707i)20-s + ⋯ |
Λ(s)=(=(119s/2ΓR(s+1)L(s)(0.823−0.567i)Λ(1−s)
Λ(s)=(=(119s/2ΓR(s+1)L(s)(0.823−0.567i)Λ(1−s)
Degree: |
1 |
Conductor: |
119
= 7⋅17
|
Sign: |
0.823−0.567i
|
Analytic conductor: |
12.7883 |
Root analytic conductor: |
12.7883 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ119(26,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 119, (1: ), 0.823−0.567i)
|
Particular Values
L(21) |
≈ |
1.742604228−0.5426986170i |
L(21) |
≈ |
1.742604228−0.5426986170i |
L(1) |
≈ |
1.158163650−0.1229890846i |
L(1) |
≈ |
1.158163650−0.1229890846i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 17 | 1 |
good | 2 | 1+(−0.866+0.5i)T |
| 3 | 1+(0.965−0.258i)T |
| 5 | 1+(0.258−0.965i)T |
| 11 | 1+(0.258+0.965i)T |
| 13 | 1+T |
| 19 | 1+(0.866−0.5i)T |
| 23 | 1+(−0.965−0.258i)T |
| 29 | 1+(−0.707−0.707i)T |
| 31 | 1+(0.965−0.258i)T |
| 37 | 1+(0.258−0.965i)T |
| 41 | 1+(0.707−0.707i)T |
| 43 | 1+iT |
| 47 | 1+(−0.5−0.866i)T |
| 53 | 1+(0.866+0.5i)T |
| 59 | 1+(0.866+0.5i)T |
| 61 | 1+(−0.965−0.258i)T |
| 67 | 1+(−0.5+0.866i)T |
| 71 | 1+(0.707+0.707i)T |
| 73 | 1+(−0.965+0.258i)T |
| 79 | 1+(−0.965−0.258i)T |
| 83 | 1+iT |
| 89 | 1+(−0.5−0.866i)T |
| 97 | 1+(0.707+0.707i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−29.05683416708101414879140632176, −27.68373666904112009383085830827, −26.864577333767311396797385076810, −26.09677433364249453426034252446, −25.41361205615620824551227383722, −24.29612592572330872385305556358, −22.43361263918164211000025665997, −21.55515488321381261506628593315, −20.685683705463283756934194326064, −19.61129279288611333435981042518, −18.713047589595681339819849651165, −18.05737448624892945675856055828, −16.45928457839909620972355376204, −15.56227258013845426724161855115, −14.18950872636208655179794483169, −13.338379643827752468877906888923, −11.63192183149556118562636854858, −10.60067927000352148767843796516, −9.67826443135784974715209829096, −8.55819941725764013666266654784, −7.58545852767520693153844819996, −6.23872041428022993217145742555, −3.72372471074241880436607649640, −2.97116224562166065620436078789, −1.51299155529510409697429112992,
1.02326237179548332211040915661, 2.19728884454937633674536023303, 4.2794500487840304225961745058, 5.90711737995345550190364975166, 7.294680907787454601599661758292, 8.30773635960411712217260558454, 9.22252914599826590001802297623, 10.0109209717788535413748001334, 11.7989831806906156594778802331, 13.1636849946900450368893978221, 14.18438053967815148293500071006, 15.41394026142249678717602713859, 16.21065724945120332049321943127, 17.55629203192261212342071334519, 18.32840426973165559676740847788, 19.636121914439396093099330868354, 20.30553809506669602536583956965, 21.09459812520991898002134762681, 23.043415390649262001486815100825, 24.27816358443805910518689490301, 24.80819963871329093790263272115, 25.79251445496052224480347510581, 26.45462576672177833498239891793, 27.89636378256764286759041738221, 28.37270938058431194912861976291