L(s) = 1 | + i·2-s + (0.707 − 0.707i)3-s − 4-s + (−0.707 + 0.707i)5-s + (0.707 + 0.707i)6-s − i·8-s − i·9-s + (−0.707 − 0.707i)10-s + (−0.707 − 0.707i)11-s + (−0.707 + 0.707i)12-s + 13-s + i·15-s + 16-s + 18-s − i·19-s + (0.707 − 0.707i)20-s + ⋯ |
L(s) = 1 | + i·2-s + (0.707 − 0.707i)3-s − 4-s + (−0.707 + 0.707i)5-s + (0.707 + 0.707i)6-s − i·8-s − i·9-s + (−0.707 − 0.707i)10-s + (−0.707 − 0.707i)11-s + (−0.707 + 0.707i)12-s + 13-s + i·15-s + 16-s + 18-s − i·19-s + (0.707 − 0.707i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.651 - 0.758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.651 - 0.758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.135755288 - 0.5218143797i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.135755288 - 0.5218143797i\) |
\(L(1)\) |
\(\approx\) |
\(0.9932238307 + 0.09359833009i\) |
\(L(1)\) |
\(\approx\) |
\(0.9932238307 + 0.09359833009i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + iT \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 11 | \( 1 + (-0.707 - 0.707i)T \) |
| 13 | \( 1 + T \) |
| 19 | \( 1 - iT \) |
| 23 | \( 1 + (-0.707 - 0.707i)T \) |
| 29 | \( 1 + (0.707 - 0.707i)T \) |
| 31 | \( 1 + (0.707 - 0.707i)T \) |
| 37 | \( 1 + (-0.707 + 0.707i)T \) |
| 41 | \( 1 + (-0.707 - 0.707i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + iT \) |
| 59 | \( 1 + iT \) |
| 61 | \( 1 + (-0.707 - 0.707i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (-0.707 + 0.707i)T \) |
| 73 | \( 1 + (-0.707 + 0.707i)T \) |
| 79 | \( 1 + (-0.707 - 0.707i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.707 + 0.707i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.72377664733637559952132066792, −28.00519224216009894582768495069, −27.25386153825374280948573073362, −26.26497820012434772001482140348, −25.20206872928969940930653485239, −23.60307155346922155614322195010, −22.84024094956311730630829758091, −21.4384825772911398355217734657, −20.726668859223237417411902534695, −20.02834613336583186987952265540, −19.10803206430966654838558879249, −17.89993789764907162855620752133, −16.36626118532114004315590373310, −15.46141038993395969892461805439, −14.158871793049788468252911010549, −13.09303263768420052062635832511, −12.048525484385350562680303794020, −10.77053000533154567514106759448, −9.80830502609424938338731209980, −8.63318260348742417113767746297, −7.89458258983629590576236047441, −5.25672625670749015967397115052, −4.20932430876842882094987195398, −3.24084664838334170701847258916, −1.60008466253384032841284463647,
0.49785906472684130237664124453, 2.874587957609983150099830440637, 4.11055424211149688621831264538, 6.0191293854607870098673122341, 6.98269282289367203548235157457, 8.057380217723522164158218165345, 8.73562967950483095907803400391, 10.42241361762782070134684969991, 11.974820083681106320227488323575, 13.415306370844265167951052229935, 13.9861526954092973878607607281, 15.30081995949708908260097208636, 15.83420321408948978919961847828, 17.467893443387885269463662373063, 18.62634225689534810057664669092, 18.94330623958736069036622134049, 20.38261538572360128055243298082, 21.83130007927972140865292267242, 23.09422731759727126424587714978, 23.79273809711065619784140727936, 24.60279698034473549908908563053, 25.98475923035810596160657071524, 26.22341138657156456383294772334, 27.336908593739767944047964199671, 28.64433396988932556632155792289