L(s) = 1 | + (0.173 − 0.984i)3-s + (−0.766 − 0.642i)5-s + (−0.5 − 0.866i)7-s + (−0.939 − 0.342i)9-s + (0.5 − 0.866i)11-s + (0.173 + 0.984i)13-s + (−0.766 + 0.642i)15-s + (−0.939 + 0.342i)17-s + (−0.939 + 0.342i)21-s + (0.766 − 0.642i)23-s + (0.173 + 0.984i)25-s + (−0.5 + 0.866i)27-s + (−0.939 − 0.342i)29-s + (0.5 + 0.866i)31-s + (−0.766 − 0.642i)33-s + ⋯ |
L(s) = 1 | + (0.173 − 0.984i)3-s + (−0.766 − 0.642i)5-s + (−0.5 − 0.866i)7-s + (−0.939 − 0.342i)9-s + (0.5 − 0.866i)11-s + (0.173 + 0.984i)13-s + (−0.766 + 0.642i)15-s + (−0.939 + 0.342i)17-s + (−0.939 + 0.342i)21-s + (0.766 − 0.642i)23-s + (0.173 + 0.984i)25-s + (−0.5 + 0.866i)27-s + (−0.939 − 0.342i)29-s + (0.5 + 0.866i)31-s + (−0.766 − 0.642i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.660 + 0.750i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.660 + 0.750i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.2207430146 - 0.4880668175i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.2207430146 - 0.4880668175i\) |
\(L(1)\) |
\(\approx\) |
\(0.6262104263 - 0.4481592846i\) |
\(L(1)\) |
\(\approx\) |
\(0.6262104263 - 0.4481592846i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.173 - 0.984i)T \) |
| 5 | \( 1 + (-0.766 - 0.642i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.173 + 0.984i)T \) |
| 17 | \( 1 + (-0.939 + 0.342i)T \) |
| 23 | \( 1 + (0.766 - 0.642i)T \) |
| 29 | \( 1 + (-0.939 - 0.342i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (-0.173 + 0.984i)T \) |
| 43 | \( 1 + (-0.766 - 0.642i)T \) |
| 47 | \( 1 + (-0.939 - 0.342i)T \) |
| 53 | \( 1 + (0.766 - 0.642i)T \) |
| 59 | \( 1 + (-0.939 + 0.342i)T \) |
| 61 | \( 1 + (-0.766 + 0.642i)T \) |
| 67 | \( 1 + (-0.939 - 0.342i)T \) |
| 71 | \( 1 + (-0.766 - 0.642i)T \) |
| 73 | \( 1 + (0.173 - 0.984i)T \) |
| 79 | \( 1 + (-0.173 + 0.984i)T \) |
| 83 | \( 1 + (0.5 + 0.866i)T \) |
| 89 | \( 1 + (-0.173 - 0.984i)T \) |
| 97 | \( 1 + (0.939 - 0.342i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.978720525181477296255675022852, −27.60501576020138083799554094428, −26.48067915427094378769281398126, −25.65136759868153316305584414592, −24.75873684077251374309078693369, −23.043974382289153201417789703709, −22.531429240810492031189178218916, −21.746553781681601113163508839073, −20.3685315558306860036816233066, −19.70648259853464786244758715961, −18.558463756444664455527172659092, −17.40056559799335722111630012462, −16.05296765404217000150808687661, −15.22131119571571491878242898346, −14.84136584416739702933540063013, −13.18329958978107399329033505401, −11.85110897977586256544510480094, −10.97483261271692886198757635655, −9.790778197939737818336999495429, −8.87245465577030323840240387067, −7.57444154341208162890414189335, −6.17447980300980093044851968353, −4.80942690944565087095190113509, −3.57862928482130973992215785694, −2.57720688632008346454079489720,
0.20311139114352733988174737869, 1.418594330787170482250079482240, 3.2816430053983295711963507286, 4.44762275980022318510672575924, 6.27856930735075838576929804132, 7.1162019789863758075375972098, 8.3392273395976676385768055224, 9.1566768012480019349785614671, 11.01274304198024016388622199333, 11.84251576105253753702600043630, 13.04656443117579090510264364436, 13.671738518833893820775199994126, 14.93639355940776181645502737062, 16.47669088103824302987544964242, 16.91233296505366922941263436610, 18.40177156860276829171044860813, 19.47546678165732544306944283734, 19.81942569296026117138863853544, 21.049496673256375717457508034683, 22.55828195345812574381747273153, 23.50752376565196305217762889630, 24.15191826040648003122548017045, 24.96840402057042753168882793889, 26.33602358627598366301630959081, 26.933874515209393049268467666007